Evapotranspiration (ET) is a critical variable in the world's water cycle, and plays a significant role in estimating the impact of environmental change on the regional hydrothermal cycle. Moreover, as an essential of eco-hydrological processes, changes in ET may exceptionally impact the local climate and provide indicative information on the eco-system's functioning. The Hailar River Basin (HRB), located in northern China, is one of the most sensitive areas to climate warming. Under the influence of climate change in recent years, the vegetation dynamics of the basin have been significant and have had profound effects on the regional water cycle conditions and hydrological processes. The HRB is located in a semiarid region and ET is the main mode of water consumption. The ET response to climate change and vegetation dynamics is the focus of research on ecohydrological processes in this basin. In this study, a distributed hydrological model, the BTOPMC model, is used to evaluate the actual ET in the HRB from 1981 to 2020, based on in situ meteorological data as well as LAI data obtained by satellite remote sensing. The seasonal, interannual and spatial dynamics of ET were characterized. The contribution of meteorological factors to ET was calculated by sensitivity analysis and multiple linear regression analysis, and the predominant elements influencing the difference in ET in the HRB were also discussed. The results show that: (1) estimated ET values can clarify over 85% of the seasonal variation in the observed values (R= 0.79, P < 0.001; R= 0.84, P < 0.001), which demonstrates that the model has a high precision. (2) Over the past 40 years, the annual ET has shown a clear increasing trend and a large spatial heterogeneity in its spatial distribution, which is consistent with the trend of vegetation. It mainly shows that the eastern forest area is larger than the central forest-grass transition area and the western meadow steppe area. (3) Sensitivity and influential factor contribution analyses show that the main factor driving interannual variability in ET is climate warming, followed by precipitation. At the same time, vegetation dynamics also play a crucial role in ET, especially in areas with different vegetation types and high coverage, while climatic factors also have a strong influence on ET indirectly through vegetation. Due to its special geographic location, the HRB is more sensitive to global climate change and is a typical ecologically fragile area. Therefore, this study has important scientific value and social significance for maintaining ecological security and the sustainable use of water resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113275DOI Listing

Publication Analysis

Top Keywords

hailar river
8
river basin
8
northern china
8
water cycle
8
hrb located
8
climate change
8
vegetation dynamics
8
spatiotemporal variations
4
variations evapotranspiration
4
evapotranspiration influencing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!