We previously developed a non-cell-dependent biodegradable scaffold to create in situ tissue-engineered vasculature (iTEV) and tested it in a canine inferior vena cava (IVC) model. As iTEV features change dramatically during tissue generation, practical, simple, and accurate methods to evaluate iTEV are needed. The present study examined the usefulness of a novel method to evaluate iTEV growth and remodeling according to a simple formula using angiography: hepatic vein (HV) index = (IVC-HV junction angle) ÷ (π × [minimal internal iTEV diameter ÷ 2]2). HV index strongly correlated with the pressure gradient across iTEV, which tended to improve during the tissue generation period up to 12 months post-implantation. Time-course changes in HV index reflected iTEV tissue development and in-vivo characteristics, such as hemodynamic congestion. In conclusion, HV index is useful to assess iTEV graft function because it represents both the morphometrics and hemodynamics of iTEV with only diagnostic imaging data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015146 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267274 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!