Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in altered behavior, social development, and communication patterns. In recent years, autism prevalence has tripled, with 1 in 44 children now affected. Given that traditional diagnosis is a lengthy, labor-intensive process that requires the work of trained physicians, significant attention has been given to developing systems that automatically detect autism. We work toward this goal by analyzing audio data, as prosody abnormalities are a signal of autism, with affected children displaying speech idiosyncrasies such as echolalia, monotonous intonation, atypical pitch, and irregular linguistic stress patterns.

Objective: We aimed to test the ability for machine learning approaches to aid in detection of autism in self-recorded speech audio captured from children with ASD and neurotypical (NT) children in their home environments.

Methods: We considered three methods to detect autism in child speech: (1) random forests trained on extracted audio features (including Mel-frequency cepstral coefficients); (2) convolutional neural networks trained on spectrograms; and (3) fine-tuned wav2vec 2.0-a state-of-the-art transformer-based speech recognition model. We trained our classifiers on our novel data set of cellphone-recorded child speech audio curated from the Guess What? mobile game, an app designed to crowdsource videos of children with ASD and NT children in a natural home environment.

Results: The random forest classifier achieved 70% accuracy, the fine-tuned wav2vec 2.0 model achieved 77% accuracy, and the convolutional neural network achieved 79% accuracy when classifying children's audio as either ASD or NT. We used 5-fold cross-validation to evaluate model performance.

Conclusions: Our models were able to predict autism status when trained on a varied selection of home audio clips with inconsistent recording qualities, which may be more representative of real-world conditions. The results demonstrate that machine learning methods offer promise in detecting autism automatically from speech without specialized equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052034PMC
http://dx.doi.org/10.2196/35406DOI Listing

Publication Analysis

Top Keywords

machine learning
12
autism
8
detect autism
8
speech audio
8
children asd
8
child speech
8
convolutional neural
8
fine-tuned wav2vec
8
speech
7
children
6

Similar Publications

IntroductionAsthma attacks are set off by triggers such as pollutants from the environment, respiratory viruses, physical activity and allergens. The aim of this research is to create a machine learning model using data from mobile health technology to predict and appropriately warn a patient to avoid such triggers.MethodsLightweight machine learning models, XGBoost, Random Forest, and LightGBM were trained and tested on cleaned asthma data with a 70-30 train-test split.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.

View Article and Find Full Text PDF

Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.

Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!