Percutaneous coronary intervention is widely applied for the treatment of coronary artery disease under the guidance of X-ray coronary angiography (XCA) image. However, the projective nature of XCA causes the loss of 3D structural information, which hinders the intervention. This issue can be addressed by the deformable 3D/2D coronary artery registration technique, which fuses the pre-operative computed tomography angiography volume with the intra-operative XCA image. In this study, we propose a deep learning-based neural network for this task. The registration is conducted in a segment-by-segment manner. For each vessel segment pair, the centerlines that preserve topological information are decomposed into an origin tensor and a spherical coordinate shape tensor as network input through independent branches. Features of different modalities are fused and processed for predicting angular deflections, which is a special type of deformation field implying motion and length preservation constraints for vessel segments. The proposed method achieves an average error of 1.13 mm on the clinical dataset, which shows the potential to be applied in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2022.3168786DOI Listing

Publication Analysis

Top Keywords

coronary artery
12
deep learning-based
8
3d/2d coronary
8
artery registration
8
xca image
8
coronary
5
car-net deep
4
learning-based deformation
4
deformation model
4
model 3d/2d
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!