Although the blood-brain barrier (BBB) protects the brain from foreign entities, it also prevents some therapeutics from crossing into the central nervous system (CNS) to ameliorate diseases or infections. Drugs are administered directly into the CNS in animals and humans to circumvent the BBB. The present protocol describes a unique way of treating brain infections through intraventricular delivery of antibiotics, i.e., polymyxins, the last-line antibiotics to treat multi-drug resistant Gram-negative bacteria. A straightforward stereotaxic surgery protocol was developed to implant a guide cannula reaching into the lateral ventricle in rats. After a recovery period of 24 h, rats can be injected consciously and repeatedly through a cannula that is fitted to the guide. Injections can be delivered manually as a bolus or infusion using a microinjection pump to obtain a slow and controlled flow rate. The intraventricular injection was successfully confirmed with Evans Blue dye. Cerebrospinal fluid (CSF) can be drained, and the brain and other organs can be collected. This approach is highly amenable for studies involving drug delivery to the CNS and subsequent assessment of pharmacokinetic and pharmacodynamic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400305PMC
http://dx.doi.org/10.3791/63540DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
intraventricular drug
4
delivery sampling
4
sampling pharmacokinetics
4
pharmacokinetics pharmacodynamics
4
pharmacodynamics study
4
study blood-brain
4
blood-brain barrier
4
barrier bbb
4
bbb protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!