Recent rodent microbiome experiments suggest that besides . are important in type 2 diabetes and obesity development. In the present translational human study, we aimed to characterize in our European cross-sectional FoCus cohort (n = 1,544) followed by validation of the major results in an independent Canadian cohort (n = 438). In addition, we examined abundance in response to a weight loss intervention (n = 55). was positively associated with BMI and type 2 diabetes independently of the reduced microbiome α/β diversity and low-grade inflammation commonly found in obesity. Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untargeted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with high abundance. This is of interest, since is a known high L-cysteine consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, metabolic network enrichment analysis identified an association of high abundance with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body weight gain. This is supported by a significant reduction of the abundance during our weight loss intervention. Together, these data indicate a role for in human type 2 diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes development and the link to the fatty acid biosynthesis pathway for body weight gain in response to a carbohydrate-rich diet in obesity development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037427PMC
http://dx.doi.org/10.1080/19490976.2022.2057778DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
diabetes obesity
8
obesity development
8
weight loss
8
loss intervention
8
high abundance
8
fatty acid
8
acid biosynthesis
8
biosynthesis pathway
8
body weight
8

Similar Publications

Chemerin loss-of-function attenuates glucagon-like peptide-1 secretion in exercised obese mice.

Diabetes Obes Metab

January 2025

School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.

Aims: To investigate the role of chemerin reduction in mediating exercise-induced Glucagon-like peptide-1 (GLP-1) secretion and the amelioration of pancreatic β-cell function in obesity.

Materials And Methods: Obesity models were established using wild-type and chemerin systemic knockout mice, followed by 8 weeks of moderate-intensity continuous aerobic exercise training. Serum chemerin levels, GLP-1 synthesis, glucose tolerance, pancreatic β-cell function, structure, and apoptosis were assessed.

View Article and Find Full Text PDF

Prebiotics as modulators of colonic calcium and magnesium uptake.

Acta Physiol (Oxf)

February 2025

Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.

Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.

View Article and Find Full Text PDF

Introduction: Glucagon-like peptide-1 agonists have gained attention in recent years due to their efficacy in managing type II diabetes mellitus and their emerging role in weight management. The purpose of this study was to characterize glucagon-like peptide-1 agonist exposures reported to a single United States regional poison center over nine years, including causes of exposure, associated clinical effects, and potential areas for improving patient education and safety.

Methods: This retrospective cohort study analyzed all poison center calls involving glucagon-like peptide-1 agonists submitted to a single United States regional poison center from 14 January 2014 to 1 May 2023.

View Article and Find Full Text PDF

To investigate the effect of D-chiro inositol (DCI) supplementation on perinatal outcomes in pregnant women at high risk of gestational diabetes mellitus (GDM), we conducted a prospective, randomized, placebo-controlled study. Eligibility criteria included women aged ≥ 35 years old, with a pre-pregnancy body mass index ≥ 24 kg/m, having a family history of type 2 diabetes, having a history of GDM, polycystic ovary syndrome, or a history of delivering macrosomia infants. Participants who were recruited at a gestational age of 12-16 weeks, were randomly to receive either DCI 500 mg twice daily or to receive a placebo for 12 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!