Members of the genus are responsible for severe infections in infants and immunosuppressed individuals. Although several virulence factors have been described, many proteins involved in the pathogenesis of such infections have not yet been mapped. This study is the first to fractionate Cronobacter sakazakii cells into outer membrane, inner membrane, periplasmic, and cytosolic fractions as the basis for improved proteome mapping. A novel method was designed to prepare the fractionated samples for protein identification. The identification was performed via one-dimensional electrophoresis-liquid chromatography electrospray ionization tandem mass spectrometry. To determine the subcellular localization of the identified proteins, we developed a novel Python-based script (Subcelloc) that combines three web-based tools, PSORTb 3.0.2, CELLO 2.5, and UniProtKB. Applying this approach enabled us to identify 1,243 C. sakazakii proteins, which constitutes 28% of all predicted proteins and 49% of all theoretically expressed outer membrane proteins. These results represent a significant improvement on previous attempts to map the C. sakazakii proteome and could provide a major step forward in the identification of virulence factors. spp. are opportunistic pathogens that can cause rare and, in many cases, life-threatening infections, such as meningitis, necrotizing enterocolitis, and sepsis. Such infections are mainly linked to the consumption of contaminated powdered infant formula, with Cronobacter sakazakii clonal complex 4 considered the most frequent agent of serious neonatal infection. However, the pathogenesis of diseases caused by these bacteria remains unclear; in particular, the proteins involved throughout the process have not yet been mapped. To help address this, we present an improved method for proteome mapping that emphasizes the isolation and identification of membrane proteins. Specific focus was placed on the identification of the outer membrane proteins, which, being exposed to the surface of the bacterium, directly participate in host-pathogen interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088360PMC
http://dx.doi.org/10.1128/aem.02508-21DOI Listing

Publication Analysis

Top Keywords

membrane proteins
16
cronobacter sakazakii
12
outer membrane
12
sakazakii cells
8
subcellular localization
8
virulence factors
8
proteins
8
proteins involved
8
proteome mapping
8
membrane
6

Similar Publications

High-Performance TiCT-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights.

ACS Appl Mater Interfaces

January 2025

Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Gain-of-function variants in the voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, have previously been identified in patients with erythromelalgia, a clinical diagnosis defined by intermittent attacks of painful, hot, swollen, and red skin, predominantly involving the hands and feet. Symptoms are induced or aggravated by warming and relieved by cooling.

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!