Solvation and mesoscale ordering of sulfuric acid and other strong acid solutions leads to suppressed freezing points and strong rheological changes with varying concentration. While the solid-state structures are well-understood, studies focused on the evolving solvation structure in the solution phase have probed a limited concentration range (∼1-6 M). This study applies a total scattering approach in both the wide-angle X-ray scattering (WAXS) and pair distribution function (PDF) regimes to elucidate the evolving solvation structure over its full range of acid concentration (0-18 M). The emergence of a prepeak in the WAXS regime at intermediate concentrations indicates a transition from noninteracting sulfate molecules in the dilute limit to sterically limited sulfates at concentrations near its deep eutectic point. Fits to the PDF data quantify this trend, showing a transition from octahedrally hydrated sulfates up to 6-7 M concentrations, followed by gradual dehydration, and eventually reaching a solution structure similar to that of water-in-salt electrolyte systems at high acid concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c00523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!