A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

When Bubbles Are Not Spherical: Artificial Intelligence Analysis of Ultrasonic Cavitation Bubbles in Solutions of Varying Concentrations. | LitMetric

Ultrasonic irradiation of liquids, such as water-alcohol solutions, results in cavitation or the formation of small bubbles. Cavitation bubbles are generated in real solutions without the use of optical traps making our system as close to real conditions as possible. Under the action of the ultrasound, bubbles can grow, oscillate, and eventually collapse or decompose. We apply the mathematical method of separation of motions to interpret the acoustic effect on the bubbles. While in most situations, the spherical shape of a bubble is the most energetically profitable as it minimizes the surface energy, when the acoustic frequency is in resonance with the natural frequency of the bubble, shapes with the dihedral symmetry emerge. Some of these resonance shapes turn unstable, so the bubble decomposes. It turns out that bubbles in the solutions of different concentrations (with different surface energies and densities) attain different evolution paths. While it is difficult to obtain a deterministic description of how the solution concentration affects bubble dynamics, it is possible to separate images with different concentrations by applying the artificial neural network (ANN) algorithm. An ANN was trained to detect the concentration of alcohol in a water solution based on the bubble images. This indicates that artificial intelligence (AI) methods can complement deterministic analysis in nonequilibrium, near-unstable situations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c00948DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
cavitation bubbles
8
bubbles solutions
8
bubbles
7
bubble
5
bubbles spherical
4
spherical artificial
4
intelligence analysis
4
analysis ultrasonic
4
ultrasonic cavitation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!