A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. | LitMetric

AI Article Synopsis

  • Increased use of environmental DNA (eDNA) analysis for species detection raises the need to understand how long eDNA lasts in different environmental conditions due to its complex states.
  • Different forms of eDNA (like dissolved or particle-bound) have varying decay rates influenced by factors such as water chemistry and mineral particles.
  • Current research on eDNA persistence is limited, with many important parameters not being measured; thus, more studies are needed to assess eDNA state conversion and decay in aquatic environments.

Article Abstract

Increased use of environmental DNA (eDNA) analysis for indirect species detection has spurred the need to understand eDNA persistence in the environment. Understanding the persistence of eDNA is complex because it exists in a mixture of different states (e.g., dissolved, particle adsorbed, intracellular, and intraorganellar), and each state is expected to have a specific decay rate that depends on environmental parameters. Thus, improving knowledge about eDNA conversion rates between states and the reactions that degrade eDNA in different states is needed. Here, we focus on eukaryotic extraorganismal eDNA, outline how water chemistry and suspended mineral particles likely affect conversion among each eDNA state, and indicate how environmental parameters affect persistence of states in the water column. On the basis of deducing these controlling parameters, we synthesized the eDNA literature to assess whether we could already derive a general understanding of eDNA states persisting in the environment. However, we found that these parameters are often not being measured or reported when measured, and in many cases very few experimental data exist from which to draw conclusions. Therefore, further study of how environmental parameters affect eDNA state conversion and eDNA decay in aquatic environments is needed. We recommend analytic controls that can be used during the processing of water to assess potential losses of different eDNA states if all were present in a water sample, and we outline future experimental work that would help determine the dominant eDNA states in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069692PMC
http://dx.doi.org/10.1021/acs.est.1c07638DOI Listing

Publication Analysis

Top Keywords

edna states
16
edna
13
environmental parameters
12
states water
12
environmental dna
8
aquatic environments
8
conversion edna
8
edna state
8
parameters affect
8
states
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!