Primary cilia are ubiquitous hair-like organelles, usually projecting from the cell surface. They are essential for the organogenesis and homeostasis of various physiological functions, and their dysfunction leads to a plethora of human diseases. However, there are few reports on the role of primary cilia in the immune system; therefore, we focused on their role in the thymus that nurtures immature lymphocytes to full-fledged T cells. We detected primary cilia on the thymic epithelial cell (TEC) expressing transforming growth factor β (TGF-β) receptor in the basal body, and established a line of an intraflagellar transport protein 88 (Ift88) knockout mice lacking primary cilia in TECs (Ift88-TEC null mutant) to clarify their precise role in thymic organogenesis and T-cell differentiation. The Ift88-TEC null mutant mice showed stunted cilia or lack of cilia in TECs. The intercellular contact between T cells and the "thymic synapse" of medullary TECs was slightly disorganized in Ift88-TEC null mutants. Notably, the CD4- and CD8-single positive thymocyte subsets increased significantly. The absence or disorganization of thymic cilia downregulated the TGF-β signaling cascade, increasing the number of single positive thymocytes. To our knowledge, this is the first study reporting the physiological role of primary cilia and Ift88 in regulating the differentiation of the thymus and T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12565-022-00663-w | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
Prostate cancer (PCa) is one of the most common malignancies for male individuals globally. Androgen deprivation therapy (ADT) initially demonstrated significant efficacy in treating PCa; however, most cases of PCa eventually progress to castration-resistant prostate cancer (CRPC), which becomes increasingly challenging to manage. Notably, the loss or disruption of primary cilia in PCa cells may play a critical role in the progression of the disease, and there are no reports on the role of circular RNAs in ciliogenesis.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
Canopy flows occur when a moving fluid encounters a matrix of free-standing obstacles and are found in diverse systems, from forests and marine ecology to urban landscapes and biology (e.g. cilia arrays).
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, Mexico.
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8, an effector of Rab11 and a nucleotide exchange factor (GEF) for Rab8, is phosphorylated at S272 by NDR2 kinase (aka STK38L), a canine erd gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylated Rabin8 regulates Rab11-Rab8 succession in X.
View Article and Find Full Text PDFReproduction
January 2025
Z Li, Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China.
The estrogen receptor alpha (ERα) plays an important role in male reproduction and fertility. Its activity is modulated by phosphorylation of multiple amino acid residues. The ERα phosphorylated at serine 305 (S305) in human cells (homologous with serine 309 in mice) induces ligand-independent ERα activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!