A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning as a clinical decision support tool for patients with acromegaly. | LitMetric

Machine learning as a clinical decision support tool for patients with acromegaly.

Pituitary

Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes, Cerrahpasa Medical School, Istanbul University-Cerrahpaşa, Kocamustafapaşa Street No:53, 34098 Fatih, Istanbul, Turkey.

Published: June 2022

Objective: To develop machine learning (ML) models that predict postoperative remission, remission at last visit, and resistance to somatostatin receptor ligands (SRL) in patients with acromegaly and to determine the clinical features associated with the prognosis.

Methods: We studied outcomes using the area under the receiver operating characteristics (AUROC) values, which were reported as the performance metric. To determine the importance of each feature and easy interpretation, Shapley Additive explanations (SHAP) values, which help explain the outputs of ML models, are used.

Results: One-hundred fifty-two patients with acromegaly were included in the final analysis. The mean AUROC values resulting from 100 independent replications were 0.728 for postoperative 3 months remission status classification, 0.879 for remission at last visit classification, and 0.753 for SRL resistance status classification. Extreme gradient boosting model demonstrated that preoperative growth hormone (GH) level, age at operation, and preoperative tumor size were the most important predictors for early remission; resistance to SRL and preoperative tumor size represented the most important predictors of remission at last visit, and postoperative 3-month insulin-like growth factor 1 (IGF1) and GH levels (random and nadir) together with the sparsely granulated somatotroph adenoma subtype served as the most important predictors of SRL resistance.

Conclusions: ML models may serve as valuable tools in the prediction of remission and SRL resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11102-022-01216-0DOI Listing

Publication Analysis

Top Keywords

patients acromegaly
12
remission visit
12
machine learning
8
auroc values
8
status classification
8
srl resistance
8
preoperative tumor
8
tumor size
8
remission
7
srl
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!