The excessive use of pesticides is posing major threats to humans and the environment. However, the environmental exposure and impact of pesticides in Pakistan have yet been systematically reviewed, despite the country's leading role in pesticide use. Therefore, this study identified and then reviewed 85 peer-reviewed scientific publications on the topic. It was found that, compared to the worldwide average, Pakistan had high consumptions of pesticides, with an alarming increase of 1169% in the last two decades. The quantities of pesticides used followed an order of pyrethroids > organophosphates > organochlorines > carbamates, but organochlorines were the most problematic due to their environmental occurrence, the ability to transport across the media, and identified human and ecological toxicities. Additionally, the misuse or overuse of pesticides by farmers is prevailing due to insufficient knowledge about the risks, which leads to high risks in occupational exposure. These issues are further aggravated by the illegal use or continuous impacts of banned organochlorine pesticides. For the future, we suggested the establishment of organized monitoring, assessment, and reporting program based on environmental laws to minimize contamination and exposure to pesticides in Pakistan. Remediation of the contaminated areas to mitigate the adverse environmental-cum-health impacts are recommended in the most affected regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20164-7 | DOI Listing |
Arch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box.2455, Riyadh, 11451, Saudi Arabia.
Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.
View Article and Find Full Text PDFInsects
December 2024
Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
The melon fruit fly, (Coquillett) (Diptera: Tephritidae), is a notorious pest, posing a significant threat to a wide range of fruits and vegetables, leading to substantial agricultural losses worldwide. With growing concerns over chemical pesticide resistance and environmental safety, plant-based insecticides have emerged as eco-friendly and economically sustainable alternatives. In this context, the present study delves into the insecticidal potential of extracts against .
View Article and Find Full Text PDFPymetrozine (a pyridine azomethine pesticide) is one of the most commonly and frequently used insecticides. Scanty information is available about the deleterious effects of Pymetrozine on fish especially bighead carp. Hence, the current study investigated chronic toxicological effects of pymetrozine in bighead carp.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China.
Quinoline is a nitrogen-containing heterocycle compound widely used in the medical industry for its pharmacological properties, such as its antimalarial, antimicrobial, antiparasitic, anti-inflammatory, and anticancer activities. Beyond its medical significance, quinoline shows promising applications in agriculture as a safe and effective pesticide, herbicide, and fertilizer. This review explores the evolution of quinoline research, beginning with its history and synthesis and transitioning to its biological activities and their relevance in agriculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!