Background & Objectives: Due to the absence of specific drugs or vaccines for Ebola virus disease, rapid, sensitive and reliable diagnostic methods are required to control the transmission chain of the disease and for better patient management. Isothermal amplification of nucleic acids has emerged as a promising alternative in which rapid and efficient amplification is achieved at a constant temperature without the thermal cycling required in PCR.

Methods: A one-step single-tube accelerated quantitative reverse trascription loop-mediated isothermal amplification (RT-LAMP) assay was developed by targeting the NP gene of 2014 Zaire Ebola virus (ZEBOV). The RT-LAMP assay was found to be specific for ZEBOV, without having any cross-reactivity with related haemorrhagic fever viral agents.

Results: The comparative evaluation of Ebola virus NP gene-specific RT-LAMP assay with reverse transcription (RT) - PCR and TaqMan real-time RT-PCR demonstrated that RT-LAMP was 10-1000 folds more sensitive than TaqMan real-time RT-PCR and conventional RT-PCR, respectively, with a detection limit of 1 copy number. In the absence of real-world clinical samples, the feasibility of Ebola virus RT-LAMP assay for clinical diagnosis was evaluated with different body fluids including serum, urine, saliva, semen and stool samples from healthy human volunteers spiked with gamma-irradiated ZEBOV 2014 obtained from Robert Koch Institute, Berlin, Germany, through the European Network for Diagnostics of Imported Viral Diseases. The Ebola virus RT-LAMP assay could correctly be picked up the spiked samples up to 1 copy of viral RNA without having any matrix interference. The monitoring of gene amplification can also be visualized with the naked eye by using SYBR Green I fluorescent dye.

Interpretation & Conclusions: Thus, due to easy operation without a requirement of sophisticated equipment and skilled personnel, the RT-LAMP assay reported here is a valuable tool as a point-of-care diagnosis for the rapid and real-time detection of Ebola virus in resource-limited healthcare settings of developing countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205003PMC
http://dx.doi.org/10.4103/ijmr.IJMR_864_19DOI Listing

Publication Analysis

Top Keywords

rt-lamp assay
28
ebola virus
28
one-step single-tube
8
single-tube accelerated
8
accelerated quantitative
8
reverse transcription
8
loop-mediated isothermal
8
gene amplification
8
rt-lamp
8
amplification rt-lamp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!