A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of 2.4 GHz radiofrequency radiation emitted from Wi-Fi on some miRNA and faty acids composition in brain. | LitMetric

AI Article Synopsis

  • The study aims to explore the impact of 2.4 GHz Wi-Fi exposure on brain cell composition, specifically focusing on microRNA and fatty acid profiles in rats.
  • Sixteen Wistar Albino rats were split into two groups: one exposed to continuous Wi-Fi radiation for a year and another kept without exposure as a control group.
  • Results showed that long-term Wi-Fi exposure increased certain microRNA and fatty acids in the brain, suggesting potential health risks linked to ongoing Wi-Fi use.

Article Abstract

The purpose of this study is to investigate the effects of 2.4 GHz Wi-Fi exposure, which is continuously used in the internet connection by mobile phones, computers and other wireless equipment, on microRNA and membrane and depot fatty acid composition of brain cells. Sixteen Wistar Albino rats were divided equally into two groups such as sham and exposure. The rats in the experimental group (n = 8) were exposed to 2.4 GHz RFR emitted from a Wi-Fi generator for 24 h/day for one year. The animals in the control group (n = 8) were kept under the same conditions as the experimental group, but the Wi-Fi generator was turned off. At the end of the study, rats were sacrificed and brains were removed to analyze miRNA expression and membrane and depot fatty acids of brain cells. We analyzed the situation of ten different miRNA expressions and nineteen fatty acid patterns in this study. We observed that long-term and excessive exposure of 2.4 GHz Wi-Fi radiation increased rno-miR-181a-5p, phosphatidylserine (PS) and triacylglycerol (TAG) in the brain. In conclusion, 2.4 GHz Wi-Fi exposure has the potential to alter rno-miR-181a-5p expression and the fatty acid percentage of some membrane lipids such as phospholipid (PL), phosphatidylserine (PS) and triacylglycerol (TAG), which are depot fats in the brain. However, the uncontrolled use of RFRs, whose use and diversity have reached incredible levels with each passing day and which are increasing in the future, may be paving the way for many diseases that we cannot connect with today.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15368378.2022.2065682DOI Listing

Publication Analysis

Top Keywords

24 ghz wi-fi
12
fatty acid
12
emitted wi-fi
8
composition brain
8
wi-fi exposure
8
membrane depot
8
depot fatty
8
brain cells
8
experimental group
8
wi-fi generator
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!