The novel quaternary CNT/TiO/WO/CdS nanostructure was fabricated to be employed in the photocatalytic degradation of reactive blue 19 (RB19) under the visible light irradiation. The physicochemical properties of the pure TiO, CNT/TiO, CNT/TiO/WO, and CNT/TiO/WO/CdS were characterized using XRD, FTIR, FESEM, EDX, DRS, PL, and BET analyses. The photodegradation results showed that the optimum weight percentage of CNT, WO, and CdS was 4%, 35%, and 5%, respectively. The highest RB19 degradation efficiency of CNT/TiO/WO/CdS was achieved 97%. Besides, the central composite design was applied to model and optimize the photocatalytic activity of CNT/TiO/WO/CdS nanocatalyst and assess the effects of processing variables including RB19 concentration, catalyst concentration, pH, and irradiation time on the response. RB19 concentration and pH had the most and the second most significant role in the removal efficiency. While increasing the catalyst concentration and irradiation time positively enhanced the removal efficiency to more than 82%, increasing the pH and dye concentration showed the remarkable hindering effects on the removal efficiency by about 45% reduction. The reusability of the synthesized catalysts was studied under the optimum conditions as follows: [RB19] = 25 mg/L, [catalyst] = 1 g/L, pH of 4, and irradiation time = 2 h. The COD and TOC analyses were also conducted during photodegradation process. The COD and TOC removal efficiencies were achieved about 67% and 62%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20172-7 | DOI Listing |
Drug Dev Ind Pharm
January 2025
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
BACKGROUND Dental caries removal is conventionally done using carbide burs, but non-metallic polymer burs have recently been developed with the aim of being more selective and causing less pain. The objective of the study is to evaluate and compare the effectiveness of caries removal, time taken, and patient compliance during restorations using smart bur and carbide burs in pediatric patients. MATERIAL AND METHODS A clinical study was designed and conducted at the Pedodontics Outpatient Department, with a focus on 40 children between 6 and 12 years old, who were split into 2 groups consisting of 20 children each: group 1, using a carbide conventional rotary bur, and group 2, using a smart bur.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.
Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!