Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant diseases cause signif icant economic losses in agriculture around the world. Early detection, quantif ication and identif ication of plant diseases are crucial for targeted application of plant protection measures in crop production. Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. The analysis of the ref lection spectrum of plant tissue makes it possible to classify healthy and diseased plants, assess the severity of the disease, differentiate the types of pathogens, and identify the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. This review describes the basic principles of hyperspectral measurements and different types of available hyperspectral sensors. Possible applications of hyperspectral sensors and platforms on different scales for diseases diagnosis are discussed and evaluated. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which make it possible to simultaneously evaluate both physiological and morphological parameters. The review describes the main steps of the hyperspectral data analysis process: image acquisition and prepro cessing; data extraction and processing; modeling and analysis of data. The algorithms and methods applied at each step are mainly summarized. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation and identif ication of diseases, estimation of disease severity, phenotyping of disease resistance of genotypes. A comprehensive review of scientif ic publications on the diagnosis of plant diseases highlights the benef its of hyperspectral technologies in investigating interactions between plants and pathogens at various measurement scales. Despite the encouraging progress made over the past few decades in monitoring plant diseases based on hyperspectral technologies, some technical problems that make these methods diff icult to apply in practice remain unresolved. The review is concluded with an overview of problems and prospects of using new technologies in agricultural production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983301 | PMC |
http://dx.doi.org/10.18699/VJGB-22-25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!