Tollip promotes hepatocellular carcinoma progression via PI3K/AKT pathway.

Open Med (Wars)

Department of Gastroenterology, The Second Affiliated Hospital of University of South China, No. 35 Jiefang Road, Hengyang City, 421001, Hunan province, China.

Published: April 2022

The activation of signaling pathways induced by Toll-like receptor (TLR) has been demonstrated to play essential roles in multiple liver diseases. Toll-interacting protein (Tollip) acts as an endogenous negative modulator of TLR signaling and is implicated in various cardio-metabolic diseases. However, the effect of Tollip in hepatocellular carcinoma (HCC) remains elusive. In the current study, enhanced Tollip expression was observed in HCC cells and tissues examined by RT-PCR, western blot, and immunohistochemistry staining. Moreover, the co-immunofluorescence staining demonstrated that increased Tollip expression was primarily located in hepatocytes. Functionally, Tollip overexpression significantly increased proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, which ultimately accelerated tumorigenesis. Mechanistically, Tollip overexpression dramatically promoted the activation of PI3K/AKT signaling pathway in HCC cells which was attenuated by Tollip silencing. Importantly, the inhibition of PI3K/AKT axis can abolish the promoted effects of Tollip on proliferation and EMT of HCC cells. Our current study demonstrated that Tollip played an important role in the regulation of HCC development by engaging PI3K/AKT signaling pathway. These evidences suggested that the blockade of Tollip-PI3K/AKT axis was an ideal therapeutic treatment for management of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976180PMC
http://dx.doi.org/10.1515/med-2022-0453DOI Listing

Publication Analysis

Top Keywords

hcc cells
16
tollip
10
hepatocellular carcinoma
8
current study
8
tollip expression
8
tollip overexpression
8
emt hcc
8
pi3k/akt signaling
8
signaling pathway
8
hcc
7

Similar Publications

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Comparison of C-Acetate and F-FDG PET/CT for Immune Infiltration and Prognosis in Hepatocellular Carcinoma.

Cancer Sci

January 2025

Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.

Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with a poor prognosis. During the development of cancer cells, mitochondria influence various cell death patterns by regulating metabolic pathways such as oxidative phosphorylation. However, the relationship between mitochondrial function and cell death patterns in HCC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!