Thalamic stroke may result in cognitive and linguistic problems, but the underlying mechanism remains unknown. Especially, it is still a matter of debate why thalamic aphasia occasionally occurs and then mostly recovers to some degree. We begin with a brief overview of the cognitive dysfunction and aphasia, and then review previous hypotheses of the underlying mechanism. We introduced a unique characteristic of relatively transient "word retrieval difficulty" of patients in acute phase of thalamic stroke. Word retrieval ability involves both executive function and speech production. Furthermore, SMA aphasia and thalamic aphasia may resemble in terms of the rapid recovery, thus suggesting a shared neural system. This ability is attributable to the supplementary motor area (SMA) and inferior frontal cortex (IFG) via the frontal aslant tract (FAT). To explore the possible mechanism, we applied unique hybrid neuroimaging techniques: single-photon emission computed tomography (SPECT) and functional near-infrared spectroscopy (f-NIRS). SPECT can visualize the brain distribution associated with word retrieval difficulty, cognitive disability or aphasia after thalamic stroke, and f-NIRS focuses on SMA and monitors long-term changes in hemodynamic SMA responses during phonemic verbal task. SPECT yielded common perfusion abnormalities not only in the fronto-parieto-cerebellar-thalamic loop, but also in bilateral brain regions such as SMA, IFG and language-relevant regions. f-NIRS demonstrated that thalamic stroke developed significant word retrieval decline, which was intimately linked to posterior SMA responses. Word retrieval difficulty was rapidly recovered with increased bilateral SMA responses at follow-up NIRS. Together, we propose that the cognitive domain affected by thalamic stroke may be related to the fronto-parieto-cerebellar-thalamic loop, while the linguistic region may be attributable to SMA, IFG and language-related brain areas. Especially, bilateral SMA may play a crucial role in the recovery of word retrieval, and right language-related region, including IFG, angular gyrus and supramarginal gyrus may determine recovery from thalamic aphasia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941189 | PMC |
http://dx.doi.org/10.3934/Neuroscience.2022001 | DOI Listing |
J Neurol Neurosurg Psychiatry
January 2025
Department of Psychology, Nanyang Technological University, Singapore
Background: White matter hyperintensities (WMH) have been implicated in the pathogenesis of neuropsychiatric symptoms of dementia but the functional significance of WMH in specific white matter (WM) tracts is unclear. We investigate whether WMH burden within major WM fibre classes and individual WM tracts are differentially associated with different neuropsychiatric syndromes in a large multicentre study.
Method: Neuroimaging and neuropsychiatric data of seven memory clinic cohorts through the Meta VCI Map consortium were harmonised.
J Comput Assist Tomogr
November 2024
Graduate MBA Program, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Cambridge, United Kingdom.
Purpose: This study examined the occurrence and MRI characteristics of perinatal arterial ischemic stroke (PAIS) in children with cerebral palsy (CP) and suspected term hypoxic-ischemic injury (HII).
Methods: A retrospective review of brain MRI scans was conducted on children with CP and suspected term HII in South Africa.
Results: Out of 1620 children with CP included in the study, 15 (0.
Brain Imaging Behav
January 2025
Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: Studies on the impact of white matter hyperintensity (WMH) on function outcome have primarily concentrated on WMH volume, overlooking the potential significance of WMH location. This study aimed to investigate the relationship between WMH location and outcome in patients with their first-ever acute ischemic stroke (AIS).
Methods: Patients who underwent their first AIS between September 2021 and September 2022 were recruited.
J Neurosurg
January 2025
1Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Switzerland.
Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.
Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.
Front Neurol
December 2024
Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!