Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as "biological factories," enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989711 | PMC |
http://dx.doi.org/10.1016/j.omto.2022.03.008 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia.
Background: The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate.
Methods: Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!