The centrosome is the main microtubule-organizing center of animal cells, and is composed of two barrel-shaped microtubule-based centrioles embedded in protein dense pericentriolar material. Compositional and architectural re-organization of the centrosome drives its duplication, and enables its microtubule-organizing activity and capability to form the primary cilium, which extends from the mature (mother) centriole, as the cell exits the cell cycle. Centrosomes and primary cilia are essential to human health, signified by the causal role of centrosome- and cilia-aberrations in numerous congenic disorders, as well as in the etiology and progression of cancer. The list of disease-associated centrosomal proteins and their proximitomes is steadily expanding, emphasizing the need for high resolution mapping of such proteins to specific substructures of the organelle. Here, we provide a detailed 3D-structured illumination microscopy (3D-SIM) protocol for comparative localization analysis of fluorescently labeled proteins at the centrosome in fixed human cell lines, at approximately 120 nm lateral and 300 nm axial resolution. The procedure was optimized to work with primary antibodies previously known to depend on more disruptive fixation reagents, yet largely preserves centriole and centrosome architecture, as shown by transposing acquired images of landmark proteins on previously published transmission electron microscopy (TEM) images of centrosomes. Even more advantageously, it is compatible with fluorescent protein tags. Finally, we introduce an internal reference to ensure correct 3D channel alignment. This protocol hence enables flexible, swift, and information-rich localization and interdependence analyses of centrosomal proteins, as well as their disorder-associated mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983163 | PMC |
http://dx.doi.org/10.21769/BioProtoc.4360 | DOI Listing |
Postepy Biochem
May 2024
Biocenter, Faculty of Biology, Ludwig Maximilians University (LMU), 82152 Martinsried, Germany(LMU), 82152 Martinsried, Germany.
Genome replication requires duplication of the complete set of DNA sequences together with nucleosomes and epigenetic signatures. Notwithstanding profound knowledge on mechanistic details of DNA replication, major problems of genome replication have remained unresolved. In this perspective article, we consider the accessibility of replication machines to all DNA sequences in due course, the maintenance of functionally important positional and structural features of chromatid domains during replication, and the rapid transition of CTs into prophase chromosomes with two chromatids.
View Article and Find Full Text PDFForensic Sci Int
August 2024
Centre for Forensic Anthropology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
Methods Mol Biol
June 2024
Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.
Three-dimensional structured illumination microscopy (3D-SIM) and fluorescence in situ hybridization on three-dimensional preserved cells (3D-FISH) have proven to be robust and efficient methodologies for analyzing nuclear architecture and profiling the genome's topological features. These methods have allowed the simultaneous visualization and evaluation of several target structures at super-resolution. In this chapter, we focus on the application of 3D-SIM for the visualization of 3D-FISH preparations of chromosomes in interphase, known as Chromosome Territories (CTs).
View Article and Find Full Text PDFActa Physiol (Oxf)
August 2024
Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany.
Aim: Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac).
View Article and Find Full Text PDFThe 3D structured light field manipulated by a digital-micromirror-device (DMD)-based digital hologram has demonstrated its superiority in fast-fabricating stereo nanostructures. However, this technique intrinsically suffers from defects of light intensity in generating modulated focal spots, which prevents from achieving high-precision micro/nanodevices. In this Letter, we have demonstrated a compensation approach based on adapting spatial voxel density for fabricating optical metalenses with ultrahigh precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!