Background: is a type of soft tissue sarcoma, the histologic origin and differentiation direction of which are still unclear. There are few treatment options for other than surgery. Herein we describe a patient who had multiple recurrences of postoperatively, but R0 resection was achieved by local hyperthermia combined with chemotherapy, thus providing a new treatment approach for similar situations.

Case Summary: A 65-year-old man sought evaluation from a physician for a mass on his right back. After surgery, the pathologic diagnosis was fibrosarcoma. During the follow-up evaluations until 2021, the patient had four relapses of varying degrees. Postoperative pathology confirmed the recurrence of on the right back. In March 2021, he underwent local hyperthermia combined with two cycles of chemotherapy for recurring lesions. After magnetic resonance imaging re-examination and preoperative examination, the patient chose surgery again. During the operation, the tumors were easy to excise, the amount of bleeding decreased significantly, and the pathologic evaluation confirmed that one of the specimens was an R0 excision.

Conclusion: Local hyperthermia combined with chemotherapy enables R0 resection to be achieved in patients with advanced recurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968798PMC
http://dx.doi.org/10.12998/wjcc.v10.i9.2916DOI Listing

Publication Analysis

Top Keywords

local hyperthermia
16
hyperthermia combined
16
combined chemotherapy
12
multiple recurrences
8
resection achieved
8
local
4
combined
4
chemotherapy
4
chemotherapy treatment
4
treatment multiple
4

Similar Publications

Microfocused ultrasound (MFU) and (MRF) are non-invasive modalities widely used for skin rejuvenation and are often combined with injectables, including neuromodulators and soft tissue fillers. However, large-scale, long-term safety data on such combination therapies are lacking. To address this gap, we conducted a retrospective chart review at two private practice dermatology clinics in South Korea from June 2005 to December 2023.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles (MNPs). However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!