To improve the efficacy of antibody drug conjugates (ADCs), there has been significant focus on increasing the drug-to-antibody ratio (DAR) in order to deliver more payload. However, due to the hydrophobicity of many cytotoxics, highly-loaded conjugates often have lower physicochemical stability and poorer pharmacokinetic outcomes, requiring the development of new hydrophilic linkers. Herein, we report a platform for the preparation of functional, sequence-defined polymers for conjugation to antibodies. We demonstrate the successful synthesis of novel diazido macrocyclic sulfate monomers of varied size ranging from 4 to 7 ethylene glycol repeat units. These monomers were then successively ring-opened to produce sequence-defined polymers that contained either 4 or 6 azides for post-synthesis functionalization. Given the hydrophilic ethylene glycol backbone and chemically defined nature of the polymers, we envisioned this as a useful strategy in the preparation of highly-loaded ADCs. To demonstrate this, we prepared a model polymer-fluorophore scaffold composed of 4 coumarin molecules and conjugated it to Herceptin. We fully characterized the conjugate mass spectrometry, which yielded a polymer-to-antibody ratio of 6.6, translating to a total of 26 fluorophores conjugated to the antibody at the inter-chain disulfides. We believe this technology to not only be a meaningful contribution to the field of sequence-defined polymers and conjugates, but also as a general and tunable platform for drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966716PMC
http://dx.doi.org/10.1039/d1sc06242eDOI Listing

Publication Analysis

Top Keywords

sequence-defined polymers
16
diazido macrocyclic
8
antibody drug
8
drug conjugates
8
ethylene glycol
8
polymers
5
macrocyclic sulfates
4
sulfates platform
4
platform synthesis
4
sequence-defined
4

Similar Publications

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics.

View Article and Find Full Text PDF

Sequence-defined polymers composed of a large pool of chemically distinct monomers (SDPs) have been pursued to achieve the structural and functional precisions exhibited by biopolymers in nonbiological environments. In contrast to the incremental growth of SDPs by sequential addition of individual monomers, the iterative exponential growth (IEG) method allows the synthesis of high molecular-weight SDPs, but their sequences have been composed mostly of binary monomers. Consequently, achieving high molecular-weight SDPs built with a large pool of monomers remains a challenge.

View Article and Find Full Text PDF

Switchable Radical Polymerization of α-Olefins via Remote Hydrogen Atom or Group Transfer for Enhanced Battery Performance.

Angew Chem Int Ed Engl

December 2024

Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Introducing polar groups into non-polar polyolefins can significantly enhance the important properties of materials. However, producing polyolefin backbones consisting of polar blocks remains elusive, due to the substantial difference of reactivity ratios between polar and non-polar olefin monomers in radical polymerization or the poisoning of transition-metal catalysts by polar groups in coordination polymerization. Herein we present a practical way for the preparation of polyethylene-based polymers with distinct polar groups by radical polymerization of α-olefins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!