All-solid-state sodium batteries with poly(ethylene oxide) (PEO)-based electrolytes have shown great promise for large-scale energy storage applications. However, the reported PEO-based electrolytes still suffer from a low Na transference number and poor ionic conductivity, which mainly result from the simultaneous migration of Na and anions, the high crystallinity of PEO, and the low concentration of free Na. Here, we report a high-performance PEO-based all-solid-state electrolyte for sodium batteries by introducing NaSbS to interact with the TFSI anion in the salt and decrease the crystallinity of PEO. The optimal PEO/NaTFSI/NaSbS electrolyte exhibits a remarkably enhanced Na transference number (0.49) and a high ionic conductivity of 1.33 × 10 S cm at 45 °C. Moreover, we found that the electrolyte can largely alleviate Na depletion near the electrode surface in symmetric cells and, thus, contributes to stable and dendrite-free Na plating/stripping for 500 h. Furthermore, all-solid-state Na batteries with a 3,4,9,10-perylenetetracarboxylic dianhydride cathode exhibit a high capacity retention of 84% after 200 cycles and superior rate performance (up to 10C). Our work develops an effective way to realize a high-performance all-solid-state electrolyte for sodium batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943854 | PMC |
http://dx.doi.org/10.1039/d1sc06745a | DOI Listing |
Nat Nanotechnol
January 2025
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
The increasingly accumulated end-of-life batteries require high-efficiency regeneration technology for sustainable development. However, the existing recycling methods are highly restricted in a direct additive process due to the inconsistent content of alkaline ions within various spent materials and then failure to recover them together. Here, a subtractive process is introduced for the integrated regeneration of spent cathode materials, which successfully transforms the cathode materials with an unknown Na content to the desodiation phase together via water only.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
Layered sulfide crystals are suitable hosts for lithium and sodium ions in batteries. In this study, new layered lithium titanium sulfide (LTS) crystals were grown in a sealed silica tube using a LiS self-flux at 800-950 °C. X-ray diffraction (XRD) analysis results indicated the formation of a new sulfide phase with higher symmetry in the Li-Ti-S system.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.
A NaF-rich composite artificial interphase is generated relying on a simple chemical reaction by regulating methyl 2,2,2-trifluoromethyl ester reactivity, which can promote rapid ion transport and effectively inhibit dendrite growth in carbonate electrolytes. The assembled NaF@Na‖NaV(PO) full cell attains a long lifespan of 4000 cycles at 5C with 95% capacity retention, and a high specific capacity of 80.8 mAh g at 30C.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!