Similar Publications

The position-selective C-H bond activation of arenes has long been a challenging topic. Herein, we report an expedient ruthenium-electrocatalyzed site-selective -C-H phosphorylation of arenes driven by electrochemical hydrogen evolution reaction (HER), avoiding stoichiometric amounts of chemical redox-waste products. This strategy paved the way to achieve unprecedented ruthenaelectro-catalyzed -C-H phosphorylation with excellent levels of site-selectivity.

View Article and Find Full Text PDF

Ruthenaelectro(ii/iv)-catalyzed intermolecular C-H acyloxylations of phenols have been developed by guidance of experimental, CV and computational insights. The use of electricity bypassed the need for stoichiometric chemical oxidants. The sustainable electrocatalysis strategy was characterized by ample scope, and its unique robustness enabled the late-stage C-H diversification of tyrosine-derived peptides.

View Article and Find Full Text PDF

Distal Ruthenaelectro-Catalyzed meta-C-H Bromination with Aqueous HBr.

Angew Chem Int Ed Engl

May 2022

Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany.

While electrochemical ortho-selective C-H activations are well established, distal C-H activations continue to be underdeveloped. In contrast, we herein describe the electrochemical meta-C-H functionalization. The remote C-H bromination was accomplished in an undivided cell by RuCl ⋅3 H O with aqueous HBr.

View Article and Find Full Text PDF

Ruthenaelectro-Catalyzed Domino Three-Component Alkyne Annulation for Expedient Isoquinoline Assembly.

Angew Chem Int Ed Engl

February 2021

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.

The electrochemical three-component assembly of isoquinolines has been accomplished by ruthenaelectro-catalyzed C-H/N-H functionalization. The robustness of the electrocatalysis was reflected by an ample substrate scope, an efficient electrooxidation, and an operationally friendly procedure. The isolation of key intermediates and detailed mechanistic studies, including unprecedented cyclovoltammetric analysis of a seven-membered ruthenacycle, provided support for an unusual ruthenium(II/III/I) regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!