A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IoT-Enabled Framework for Early Detection and Prediction of COVID-19 Suspects by Leveraging Machine Learning in Cloud. | LitMetric

COVID-19 is the repugnant but the most searched word since its outbreak in November 2019 across the globe. The world has to battle with it until an effective solution is developed. Due to the advancement in mobile and sensor technology, it is possible to come up with Internet of things-based healthcare systems. These novel healthcare systems can be proactive and preventive rather than traditional reactive healthcare systems. This article proposes a real-time IoT-enabled framework for the detection and prediction of COVID-19 suspects in early stages, by collecting symptomatic data and analyzing the nature of the virus in a better manner. The framework computes the presence of COVID-19 virus by mining the health parameters collected in real time from sensors and other IoT devices. The framework is comprised of four main components: user system or data collection center, data analytic center, diagnostic system, and cloud system. To point out and detect the COVID-19 suspected in real time, this work proposes the five machine learning techniques, namely support vector machine (SVM), decision tree, naïve Bayes, logistic regression, and neural network. In our proposed framework, the real and primary dataset collected from SKIMS, Srinagar, is used to validate our work. The experiment on the primary dataset was conducted using different machine learning techniques on selected symptoms. The efficiency of algorithms is calculated by computing the results of performance metrics such as accuracy, precision, recall, F1 score, root-mean-square error, and area under the curve score. The employed machine learning techniques have shown the accuracy of above 95% on the primary symptomatic data. Based on the experiment conducted, the proposed framework would be effective in the early identification and prediction of COVID-19 suspect realizing the nature of the disease in better way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006083PMC
http://dx.doi.org/10.1155/2022/7713939DOI Listing

Publication Analysis

Top Keywords

machine learning
16
prediction covid-19
12
healthcare systems
12
learning techniques
12
iot-enabled framework
8
detection prediction
8
covid-19 suspects
8
symptomatic data
8
real time
8
proposed framework
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!