In this study, leftover injera waste from the southwestern parts of Ethiopia was used as a raw material for bioethanol production. The conversion of this biomass into ethanol involved processing techniques, which include hydrolysis, fermentation, and distillation. This research focuses on determining optimal parameters that are temperature, acid concentration, and hydrolyzing time in a hydrolysis stage. Using response surface analysis, the suggested model is quadratic and has three independent factors, which had significant effects on the yield of ethanol. In this analysis, the temperature and hydrolyzing time had a positive relationship with the yield of ethanol whereas acid concentration had a negative relation. The optimum yield of ethanol obtained was 79.07%. The yield optimized in g/g was 29.99, which was obtained at a temperature of 109.99°C, at an acid concentration of 1.00%, and hydrolyzing time of 49.59 minutes. For this analysis, the mathematical model equation was developed and the value was 99.9% and its desirability was 0.8867. The property of ethanol was characterized by the many parameters used in different standardization. The density, viscosity, flammability, boiling points, and pH were determined as 0.803 gcm, 1.1 cP, 14°C, 80°C, and 6.65, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007663 | PMC |
http://dx.doi.org/10.1155/2022/4809589 | DOI Listing |
J Agric Food Chem
January 2025
Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.
Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America.
Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey.
Propolis, a natural product with remarkable therapeutic potential, has gained attention for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, propolis samples from Sarıyaprak, Kovanağzı, and Çemikari in Pervari, Siirt province, were analysed comprehensively. The evaluation included wax composition, DPPH and FRAP assays, total phenolic and flavonoid content, and pollen analysis.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.
Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!