Mitochondrial membrane protein-associated neurodegeneration (MPAN) mostly arises as an autosomal recessive disease and is caused by variants in the chromosome 19 open reading frame 12 () gene. However, a few monoallelic truncating variants have been reported and segregated as autosomal dominant traits in some cases. We performed whole-exome sequencing and analyzed genes related to neurodegeneration associated with brain iron accumulation for pathogenic variants. The identified variants were confirmed by Sanger sequencing and tested using tools. The patient had an onset of depression at the age of 22 years, which rapidly progressed to severe dystonia, dementia, and bladder and bowel incontinence. Neuroimaging showed hypointensity in the substantia nigra and the globus pallidum, with additional frontotemporal atrophy. Genetic analysis revealed a single complex variant [c.336_338delinsCACA (p.Trp112CysfsTer40)] in the gene. This study enriches the genetic spectrum and clinical features of variants and provides additional evidence of the variable inheritance pattern of MPAN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006254 | PMC |
http://dx.doi.org/10.3389/fgene.2022.852374 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou 730000, China.
Mercury ions (Hg) have been found to disrupt the body's antioxidant defense mechanisms, leading to oxidative stress and physiological dysfunction. Early diagnosis and real-time monitoring of Hg fluctuations in organ damage are crucial but limited due to the lack of noninvasive and deep tissue imaging probes. Herein, a Hg-triggered targeted and NIR-II fluorescence/photoacoustic (PA) dual-mode molecular probe (NHG-2) was developed for real-time monitoring Hg fluctuations in Hg-induced acute liver and kidney injury mice.
View Article and Find Full Text PDFProgrammed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.
View Article and Find Full Text PDFGenes Dis
March 2025
College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Breast cancer (BC) has a prevalence rate of 21.8% among Saudi women and ranks as the third leading cause of death in Western nations. Nanotechnology offers innovative methods for targeted BC therapy, and this study explores the use of single-walled carbon nanotubes (SWCNTs) for delivering the senna leaf extract.
View Article and Find Full Text PDFiScience
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!