Difference of Bacterial Community Structure in the Meadow, Maize, and Continuous Cropped Alfalfa in Northeast China.

Front Microbiol

Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China.

Published: March 2022

Maize and alfalfa ( L.) have been used extensively in the animal husbandry to compensate for the lack of livestock and fodder yields in the chilly northeast of China. Little is known, however, about the impact on soil characteristics of consecutive plantings in various crops and alfalfa. In this research, the soil characteristics, bacterial community diversity, and structure of the meadow, maize, and alfalfa continuous cropping fields (i.e., 6, 10, 14, 20, and 30 years) were measured. The results showed that maize cropping and continuous cropping of alfalfa increased the soil bacterial alpha diversity compared with meadow cropping, and alpha diversity of alfalfa increased with the continuous planting years. Soil pH, total phosphorus (TP), available P, total potassium (TK), and nitrate nitrogen (NO ) content were soil variables significantly impacting the structure of soil bacterial communities in different plant types and different alfalfa continuous cropping systems. In addition, the relative abundance of some beneficial microbial species, such as and , in the cropping maize and continuous cropping of alfalfa was much higher than that in the meadow field. Moreover, the networks differ among different plant types, and also differ among different continuous cropping years of alfalfa, and topologies of the networks suggested that continuous planting of alfalfa promotes cooperation between bacteria, which facilitates the long growth of alfalfa and is beneficial to the soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008367PMC
http://dx.doi.org/10.3389/fmicb.2022.794848DOI Listing

Publication Analysis

Top Keywords

continuous cropping
20
alfalfa
11
bacterial community
8
structure meadow
8
meadow maize
8
continuous
8
maize continuous
8
northeast china
8
maize alfalfa
8
soil characteristics
8

Similar Publications

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

High Antennal Expression of and Participate in the Recognition of Alarm Pheromones by Buren.

Insects

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Insects have highly developed olfactory systems in which cytochrome P450s (CYPs) were involved as odor-degrading enzymes throughout the olfactory recognition of odor compounds by insects to avoid continuous stimulation of signaling molecules and thus damage to the olfactory nervous. To understand whether the highly expressed CYPs in the antennae play an olfactory function in worker, in this study, we find six highly expressed antennal CYPs from the transcriptome of . Multiple sequence alignment and phylogenetic analysis divided them into two families: the CYP3 family (, ) and the CYP4 family (, , , ).

View Article and Find Full Text PDF

To enhance the treatment of tumors that are resistant to radio- and chemotherapy while minimizing the side effects of radiochemotherapy, researchers are continuously seeking new active compounds for use in combination with radiotherapy. Therefore, the aim of our study was to examine the cytotoxic and radiosensitizing effects of an extract from St. John's Wort (, referred to as HP01, on human epithelial tumor cells in vitro.

View Article and Find Full Text PDF

Quinoa is the only single plant that can meet all the nutritional needs of human, and its potential for feed utilization has been continuously explored, becoming a prosperous industry for poverty alleviation. In order to further tap the feeding value of whole quinoa, develop quinoa as a feed substitute for conventional crops such as corn, and improve its comprehensive utilization rate, this experiment analyzed the silage quality and mycotoxin content of mixed silage of whole-plant quinoa (WPQ) with whole-plant corn (WPC) or stevia powder(SP) in different proportions, and further improved the silage quality of mixed silage by using two lactic acid bacteria preparations (Sila-Max and Sila-Mix). The quality, microbial population, and mycotoxin levels of quinoa and corn silage, as well as that of the mixed silage of quinoa and stevia, were evaluated using single-factor analysis of variance.

View Article and Find Full Text PDF

Background: Pre-harvest sprouting (PHS) is one of the most important problems associated with the severe decrease of yield and quality under disaster weather of continuous rain in wheat harvesting stage. At present, the functions and mechanisms related to the involvement of post-transcriptional regulation has not been studied very clearly in PHS resistance.

Results: This study compared the differences of germinated seeds in miRNAome between the PHS-tolerant and PHS-susceptible white wheat varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!