In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLS group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009411PMC
http://dx.doi.org/10.3389/fmicb.2022.826071DOI Listing

Publication Analysis

Top Keywords

thermophilic composting
12
human excreta
12
antibiotic resistance
8
climate change
8
form sustainable
8
resistance genes
8
composting
7
resistance
5
metagenomic insights
4
insights changes
4

Similar Publications

Enhancing humification in high-temperature composting: Insights from endogenous and exogenous heating strategies.

Bioresour Technol

January 2025

Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China. Electronic address:

Livestock manure is difficult to manage for high moisture and nutrients. High-temperature composting (> 75 °C) reduces moisture. However, the humification process, crucial for nutrient recycling, remains poorly understood.

View Article and Find Full Text PDF

Assessment of temperature dynamics during methane oxidation in a pilot scale compost biofilter.

Bioresour Technol

January 2025

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:

Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.

View Article and Find Full Text PDF

Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW.

View Article and Find Full Text PDF

Enhancing compost quality: Biochar and zeolite's role in nitrogen transformation and retention.

Sci Total Environ

January 2025

College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:

This research evaluated how addition of biochar and zeolite affected nitrogen transformation and retention during the composting of kitchen waste. Four treatments, control (CK), 10 % biochar (B), 10 % zeolite (Z), and 5 % biochar +5 % zeolite (BZ) were used to study nitrogen transformation and retention. The results showed that biochar and zeolite can significantly reduce the loss of NH-N during the thermophilic phase (CK: 42.

View Article and Find Full Text PDF

Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process.

Bioresour Technol

January 2025

School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!