Audio features such as inharmonicity, noisiness, and spectral roll-off have been identified as correlates of "noisy" sounds. However, such features are likely involved in the experience of multiple semantic timbre categories of varied meaning and valence. This paper examines the relationships of stimulus properties and audio features with the semantic timbre categories , , and . Participants ( = 153) rated a random subset of 52 stimuli from a set of 156 approximately 2-s orchestral instrument sounds representing varied instrument families (woodwinds, brass, strings, percussion), registers (octaves 2 through 6, where middle C is in octave 4), and both traditional and extended playing techniques (e.g., flutter-tonguing, bowing at the bridge). Stimuli were rated on the three semantic categories of interest, as well as on perceived playing exertion and emotional valence. Correlational analyses demonstrated a strong negative relationship between positive valence and perceived physical exertion. Exploratory linear mixed models revealed significant effects of extended technique and pitch register on valence, the perception of physical exertion, , and . Instrument family was significantly related to ratings of . With an updated version of the Timbre Toolbox (R-2021 A), we used 44 summary audio features, extracted from the stimuli using spectral and harmonic representations, as input for various models built to predict mean semantic ratings for each sound on the three semantic categories, on perceived exertion, and on valence. Random Forest models predicting semantic ratings from audio features outperformed Partial Least-Squares Regression models, consistent with previous results suggesting that non-linear methods are advantageous in timbre semantic predictions using audio features. Relative Variable Importance measures from the models among the three semantic categories demonstrate that although these related semantic categories are associated in part with overlapping features, they can be differentiated through individual patterns of audio feature relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010607PMC
http://dx.doi.org/10.3389/fpsyg.2022.796422DOI Listing

Publication Analysis

Top Keywords

audio features
24
semantic categories
20
three semantic
12
semantic
10
timbre semantic
8
orchestral instrument
8
instrument sounds
8
features
8
pitch register
8
instrument family
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!