Two-dimensional (2D) organic-inorganic hybrid copper halide perovskites have drawn tremendous attention as promising multifunctional materials. Herein, by incorporating -, -, and -chlorine substitutions in the benzylamine structure, we first report the influence of positional isomerism on the crystal structures of chlorobenzylammonium copper(II) chloride perovskites ACuCl. 2D polar ferromagnets (3-ClbaH)CuCl and (4-ClbaH)CuCl (ClbaH = chlorobenzylammonium) are successfully obtained. They both adopt a polar monoclinic space group at room temperature, displaying significant differences in crystal structures. In contrast, (2-ClbaH)CuCl adopts a centrosymmetric space group 2/ at room temperature. This associated structural evolution successfully enhances the physical properties of the two polar compounds with high thermal stability, discernible second harmonic generation (SHG) signals, ferromagnetism, and narrow optical band gaps. These findings demonstrate that the introduction of chlorine atoms into the interlayer organic species is a powerful tool to tune crystal symmetries and physical properties, and this inspires further exploration of designing high-performance multifunctional copper-based materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008537 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.2c00107 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck,Innrain 80-82, 6020 Innsbruck, Austria.
Cu-doped LaCu Mn O perovskites have been used as a model system for a joint experimental and theoretical assessment of the influence of the Cu doping level on the structural, electronic, and magnetic properties. The different Cu-doped phases LaCuMnO (LCM37), LaCuMnO (LCM55), and LaCuMnO (LCM73) including the respective Cu- and Mn-free benchmark materials LaCuO (LC) and LaMnO (LM) have been studied by magnetization measurements and electronic paramagnetic resonance. Ferromagnetic behavior was detected for pure LM and all Cu-doped perovskites, whereas antiferromagnetic behavior was revealed for LaCuO.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!