"Stay-at-home" orders and other health precautions enacted during the COVID-19 pandemic have led to substantial changes in residential electricity usage. We conduct a case study to analyze data from 390 apartments in New York City (NYC) to examine the impacts of two key drivers of residential electricity usage: COVID-19 case-loads and the outdoor temperature. We develop a series of regression models to predict two characteristics of residential electricity usage on weekdays: The average occupied apartment's consumption (kWh) over a 9am-5pm window and the hourly peak demand (Watt) over a 12pm-5pm window. Via a Monte Carlo simulation, we forecast the two usage characteristics under a possible scenario in which stay-at-home orders in NYC, or a similar metropolitan region, coincide with warm summer weather. Under the scenario, the 9am-5pm residential electricity usage on weekdays is predicted to be 15% - 24% higher than under prior, pre-pandemic conditions. This could lead to substantially higher utility costs for residents. Additionally, we predict that the residential hourly peak demand between 12pm and 5pm on weekdays could be 35% - 53% higher than that under pre-pandemic conditions. We conclude that the projected increase in peak demand - which might arise if stay-at-home guidelines coincided with hot weather conditions - could pose grid management challenges, especially for residential feeders. We also note that, if there is a longer lasting shift towards work and study-from-home, utilities will have to rethink load profile considerations. The applications of our predictive models to managing future smart-grid technology are also highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995371PMC
http://dx.doi.org/10.1016/j.enbuild.2021.111330DOI Listing

Publication Analysis

Top Keywords

residential electricity
20
electricity usage
16
peak demand
12
usage weekdays
8
hourly peak
8
pre-pandemic conditions
8
residential
7
electricity
5
usage
5
impacts covid-19
4

Similar Publications

This article analyzes and compares three methodologies for identifying suitable regions for solar hydrogen production using photovoltaic panels: AHP (Analytic Hierarchy Process), FAHP (Fuzzy Analytic Hierarchy Process), and MC-FAHP (Monte Carlo FAHP), integrated with GIS (Geographic Information Systems). The study employs ten criteria across technical (Global Horizontal Irradiance, temperature, slope, elevation, orientation), economic (distance from transportation and electrical networks), and social (population density, proximity to residential areas) factors. Environmental and exclusion criteria define restrictive zones.

View Article and Find Full Text PDF

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) in surface soils and street dusts in Detroit, Michigan.

Sci Total Environ

January 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States. Electronic address:

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) are toxic contaminants that were produced and used in large quantities for their stability, inertness, and other desirable electrical, cooling, and lubricating properties. Due to their environmental persistence and improper disposal, these contaminants have become broadly distributed in the environment. This study examines the levels, composition, distribution, and potential sources of these compounds in surface soils and street dusts collected at 19 residential and industrial areas in Detroit, Michigan.

View Article and Find Full Text PDF

Assessment of residential renewable energy investment under dynamic market environment: Aspect from household benefits.

J Environ Manage

January 2025

Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa City, Kanagawa Prefecture, 252-0882, Japan. Electronic address:

The adoption of residential renewable energy is pivotal for achieving the 'Net Zero' goal, yet financial assessments of household investments in this area remain complex due to dynamic market conditions. This study introduces a novel closed-form financial valuation framework for residential solar photovoltaic (PV) systems, explicitly addressing the uncertainties of electricity market price fluctuations (market risk) and energy policy changes (policy risk) using Geometric Brownian Motion (GBM). A case study in France demonstrates the framework's application, revealing that the discount rate is the most influential factor in solar PV valuation, followed by system lifespan and policy-driven Feed-in Tariff (FiT) rates.

View Article and Find Full Text PDF

Water Heater Type, Temperature Setting, Operational Conditions, and Insulation Affect Ecological Niches for Growth.

ACS ES T Water

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Residential water heating represents an important nexus of energy/water conservation, waterborne disease, hygiene, and consumer preference. Here, we examine attributes of two off-the-shelf 151-L tank water heaters, one with hot water recirculation (recirculating) and another without recirculation (standard), compared to a tankless on-demand heater (on-demand). Energy efficiency decreased in the order on-demand > standard > continuous recirculation.

View Article and Find Full Text PDF

This research aims to identify wet-cooled CSP (Concentrated Solar Power) solar power plants connected to the existing electricity grid in Cameroon. This study uses a hybrid approach which combines an MDCM-AHP method (Multi-Criteria Analysis Method - Hierarchical Analysis Process) and a GIS (Geographic Information System). The elements studied are the climate (Direct Normal Irradiance (DNI), temperature), orography (slope and elevation) and location (proximity to the electricity network, proximity to roads and railways, proximity to homes), in order to determine the weight of these different factors and combine them to obtain the final map.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!