Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer's disease.

Semin Cell Dev Biol

Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore. Electronic address:

Published: April 2023

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75 pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2022.04.005DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
20
inhibition nogo-a
12
plasticity suppressor
12
plasticity
9
plasticity associativity
8
alzheimer's disease
8
nogo-a pathway
8
restoration synaptic
8
nogo-a
7
synaptic
6

Similar Publications

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Segregation-to-integration transformation model of memory evolution.

Netw Neurosci

December 2024

Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.

Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Efficacy and working mechanisms of a Go/No-Go task-based inhibition training in smoking: A randomized-controlled trial.

Behav Res Ther

December 2024

Neuronal Plasticity Working Group, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany. Electronic address:

Objective: Deficits in inhibitory control contribute to smoking behavior. Inhibitory control training (ICT), which involves repeatedly inhibiting responses to general or substance-related stimuli, shows promise in reducing problematic substance use. This preregistered randomized-controlled trial is the first to investigate the efficacy of general and smoking-specific Go/No-Go task-based ICT on smoking behavior compared to control groups receiving no ICT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!