In the traditional particle swarm optimization algorithm, the particles always choose to learn from the well-behaved particles in the population during the population iteration. Nevertheless, according to the principles of particle swarm optimization, we know that the motion of each particle has an impact on other individuals, and even poorly behaved particles can provide valuable information. Based on this consideration, we propose Lévy flight-based inverse adaptive comprehensive learning particle swarm optimization, called LFIACL-PSO. In the LFIACL-PSO algorithm, First, when the particle is trapped in the local optimum and cannot jump out, inverse learning is used, and the learning step size is obtained through the Lévy flight. Second, to increase the diversity of the algorithm and prevent it from prematurely converging, a comprehensive learning strategy and Ring-type topology are used as part of the learning paradigm. In addition, use the adaptive update to update the acceleration coefficients for each learning paradigm. Finally, the comprehensive performance of LFIACL-PSO is measured using 16 benchmark functions and a real engineering application problem and compared with seven other classical particle swarm optimization algorithms. Experimental comparison results show that the comprehensive performance of the LFIACL-PSO outperforms comparative PSO variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2022246 | DOI Listing |
Sci Rep
January 2025
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Multi-objective and multi-stage decision-making problems require balancing multiple objectives at each stage and making optimal decision in multi-dimensional control variables, where the commonly used intelligent optimization algorithms suffer from low solving efficiency. To this end, this paper proposes an efficient algorithm named non-dominated sorting dynamic programming (NSDP), which incorporates non-dominated sorting into the traditional dynamic programming method. To improve the solving efficiency and solution diversity, two fast non-dominated sorting methods and a dynamic-crowding-distance based elitism strategy are integrated into the NSDP algorithm.
View Article and Find Full Text PDFSensors (Basel)
December 2024
The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Software-defined networking (SDN) offers an effective solution for flexible management of Wireless Sensor Networks (WSNs) by separating control logic from sensor nodes. This paper tackles the challenge of timely recovery from SDN controller failures and proposes a game theoretic model for multi-domain controllers. A game-enhanced autonomous fault recovery algorithm for SDN controllers is proposed, which boasts fast fault recovery and low migration costs.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan.
In recent times, there has been notable progress in control systems across various industrial domains, necessitating effective management of dynamic systems for optimal functionality. A crucial research focus has emerged in optimizing control parameters to augment controller performance. Among the plethora of optimization algorithms, the mountain gazelle optimizer (MGO) stands out for its capacity to emulate the agile movements and behavioral strategies observed in mountain gazelles.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Electronics Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India.
The increasing prevalence of network connections is driving a continuous surge in the requirement for network security and safeguarding against cyberattacks. This has triggered the need to develop and implement intrusion detection systems (IDS), one of the key components of network perimeter aimed at thwarting and alleviating the issues presented by network invaders. Over time, intrusion detection systems have been instrumental in identifying network breaches and deviations.
View Article and Find Full Text PDFSci Rep
January 2025
Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, P. R. China.
The working performance of the discrete functional surface is affected by the surface form. Both the surface form and the geometric function should be considered in tolerance design. However, the tolerance of different parts has different influence on the geometric function and surface form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!