A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A branch and bound algorithm for optimal television commercial scheduling. | LitMetric

A branch and bound algorithm for optimal television commercial scheduling.

Math Biosci Eng

Department of Intelligent Production Engineering, National Taichung University of Science and Technology, Taichung 40401, Taiwan.

Published: March 2022

In the current era of multimedia, television (TV) plays an important role in transmitting advertising messages. In addition, advertising is the primary source of revenue for the TV industry. Thus, a critical issue for TV stations is the scheduling of commercials in suitable advertising breaks on different TV channels to maximize revenue and minimize penalties. This type of TV commercial scheduling problem is similar to the machine scheduling problem, and both have availability constraints. However, the literature on TV commercial scheduling has not considered this perspective. Motivated by this, we consider the problem of scheduling commercials with specific service-level requirements on TV channels while minimizing the maximum lateness. The lateness of a commercial is defined to be its completion time minus its due date, and the maximum lateness is the maximum value of lateness among all commercials. We propose an exact branch and bound algorithm based on the rules and network flow methods, which were developed to solve the machine scheduling problem with availability constraints. Computational analysis shows that the bounding scheme proposed is highly effective, and a very low percentage of nodes is generated by the branch and bound algorithm. The algorithm can obtain an optimal solution for the problem.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022231DOI Listing

Publication Analysis

Top Keywords

branch bound
12
bound algorithm
12
commercial scheduling
12
scheduling problem
12
maximum lateness
12
algorithm optimal
8
scheduling commercials
8
machine scheduling
8
problem availability
8
availability constraints
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!