Immune checkpoint genes (ICGs) have recently been proven to perform instrumental functions in the maintenance of immune homeostasis and represent a promising therapeutic strategy; however, their expression patterns and prognostic values are not fully elucidated in hepatocellular carcinoma (HCC). In this investigation, we focused on establishing and validating a prognostic gene signature to facilitate decision-making in clinical practice. Clinical information, as well as transcriptome data, was obtained from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox method were employed to build a multi-gene signature in the TCGA database, while the ICGC database was used for validation. Subsequently, utilizing the six-gene signature, we were able to categorize patients into high- and low-risk groups. In two cohorts, survival analysis findings revealed a dismal outlook for the high-risk group. The receiver operating characteristic curves were utilized to estimate the gene signature's prediction ability. Moreover, correlation analysis showed high-risk group was linked to advanced pathological stage, infiltration of immune cells and therapeutic response. In summary, this unique gene profile might serve not only as a useful prognostic indicator but also as a marker of therapy responsiveness in HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2022220 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.
View Article and Find Full Text PDFCell Prolif
December 2024
Department of Geriatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.
View Article and Find Full Text PDFBackground: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.
View Article and Find Full Text PDFBMC Pulm Med
December 2024
Department of Infectious Diseases, Fujian Shengli Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
Purpose: Available research indicates that the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is significantly correlated with lung cancer brain metastasis (BM). This study established a clinical predictive model for assessing the risk of BM based on the mTORC1-related single nucleotide polymorphisms (SNPs).
Methods: In this single-center retrospective study, 395 patients with non-small cell lung cancer were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!