Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional Fe-beidellite/carbon (Fe-BEI@C) superlattice-like heterostructure was prepared by intercalation of glucose in the gallery of layered Fe-BEI followed by calcination. The interlaminar and superficial carbon coating enables Fe-BEI to have good rate performance, fast lithium-ion diffusion, and high pseudocapacitance contribution, leading to excellent lithium storage performance as anode material for lithium-ion batteries (LIBs). The Fe-BEI@C/Li half cell delivers a maximum specific capacity of 850 mAh·g at 0.5 A·g and has a 92.3% retention rate after 100 cycles along with a high-rate performance of 403 mAh·g at 5 A·g. The reversible valence state change of Si/Si and Fe/Fe (0 < < 3) in electrochemical cycles are realized without collapse of layered structure. Additionally, the Fe-BEI@C heterostructure displays a high Li diffusion coefficient of 10∼10 cm s, illustrating fast Li transfer in the interlayer of Fe-BEI@C heterostructure. Dynamic analysis reveals that the Si redox reaction is almost dominated by surface control and that of Fe is mainly diffusion-controlled. This work has exploited a novel layered silicate as anode material for LIBs and developed a molecular-level carbon hybridization method to improve their electrochemical performance, which is meaningful for the application of layered silicate in the energy-storage field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!