Photoreduced Ag surrounding single poly(4-cyanostyrene) nanoparticles for undifferentiated SERS sensing and killing of bacteria.

Talanta

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430079, PR China. Electronic address:

Published: August 2022

Developing a rapid, low cost and sensitive sensing strategy for undifferentiated detection and fast killing of bacterial pathogens are critical to alleviating bacteria infections. Here, we propose a direct photoreduction method to synthesize the SERS tag by integrating poly(4-cyanostyrene) nanoparticles (NPs) and silver ions, which are applied as bio-sensing system for bacteria sensing and fast killing. Under a focused laser spot, silver ions on the surface of the poly(4-cyanostyrene) NPs could be photoreduced into Ag NPs, thereby causing the Raman signal amplification of poly(4-cyanostyrene) NPs up to 40 times, and there is a good linear correlation between the Raman intensity of poly(4-cyanostyrene) NPs and different concentrations of Ag. Moreover, 4-mercaptophenylboronic acid, performing the same recognition function for both the Gram-positive and Gram-negative bacteria, is used as bridge between the bacteria and Ag by the inherent chemical bonding. Based on further constructed bio-sensing system, we achieved the quick count and killing of both Gram-positive bacteria, e.g., Staphylococcus aureus (S. aureus), and Gram-negative bacteria, e.g., Escherichia coli (E. coli). Notably, the sensing strategy can detect at least ∼100 cells of E. coli, ∼10 cells of S. aureus and ∼10 cells of their mixture in less than 40 min. The detection accuracy for actual samples can also reach over 80% and the bacteria were entirely killed by Ag after the detection, avoiding bacterial contamination in the environment. This novel method is anticipated to perform as a simple yet effective tool for fast and sensitive bacteria counting and killing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123450DOI Listing

Publication Analysis

Top Keywords

poly4-cyanostyrene nps
12
bacteria
9
poly4-cyanostyrene nanoparticles
8
sensing strategy
8
fast killing
8
silver ions
8
bio-sensing system
8
gram-negative bacteria
8
poly4-cyanostyrene
5
killing
5

Similar Publications

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Critical Role of Nanomaterial Mechanical Properties in Drug Delivery, Nanovaccines and Beyond.

Adv Mater

December 2024

School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia.

Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked.

View Article and Find Full Text PDF

The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!