Bicalutamide (BLT), a non-steroidal anti-androgen, is widely used in patients with advanced prostate cancer. This study aimed to synthesize a smart modified nano-adsorbent (SMNA) based on tungsten disulfide (WS) for solid-phase extraction of BLT from human plasma and urine samples. Briefly, we increased drug loading capacity of SMNA through the polymer grafting onto the WS nano-sheets. Specifically, poly (N-vinylcaprolactam) as a thermo-sensitive polymer was incorporated into the synthesized polymer networks. SMNA was characterized via TGA, XRD, FE-SEM and FT-IR techniques. The influential variables including pH (6), adsorption temperature (30°C), and contact time (10 min) were carefully optimized. After drug loading process, SMNA was exposed to 808 nm near-infrared light, the shrinkage of the thermo-sensitive polymer took place quickly and the loaded BLT released in a short time of laser irradiation. In the end, the extracted BLT was analyzed with RP-HPLC-UV system (at 270 nm wavelength). The proposed method provided favorable linearity in the range of 0.1-15 µg/mL (R ≥ 0.9998), the LOD and LOQ values were obtained 0.01 µg/mL and 0.04 µg/mL, respectively. The mean results of drug recovery (at the three different concentrations) of the spiked BLT in human plasma (92.08%) and urine (94.17%) were satisfactory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2022.114759 | DOI Listing |
Nanotechnology
January 2025
Nanjing University of Posts and Telecommunications, Nanjing University of Posts and Telecommunications, Kuala Lumpur, Selangor, 50603, MALAYSIA.
Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
Background: Incomplete radiofrequency ablation (iRFA) stimulates residual hepatocellular carcinoma (HCC) metastasis, leading to a poor prognosis for patients. Therefore, it is imperative to develop an effective therapeutic strategy to prevent iRFA-induced HCC metastasis.
Results: Our study revealed that iRFA induced an abnormal increase in ROS levels within residual HCC, which enhanced tumor cell invasiveness and promoted macrophage M2 polarization, ultimately facilitating HCC metastasis.
J Phys Condens Matter
January 2025
Aix-Marseille University, CNRS, PIIM, F-13013 Marseille, France.
Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
J Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:
Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!