In this study, we uncover a ligation-free DNA extension method in two adjacent fragmented probes, which are hybridized to target RNA, for developing a ligation-free nucleic acid amplification reaction. In this reaction, DNA elongation occurs from a forward probe to a phosphorothioated-hairpin probe in the presence of target RNA regardless of ligation. The second DNA elongation then occurs simultaneously at the nick site of the phosphorothioated probe and the self-priming region. Therefore, the binding site of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 12a is repeatedly amplified, inducing a fluorescence signal in the presence of CRISPR-Cas12a. This ligation-free isothermal gene amplification method enables the detection of target RNA with 49.2 fM sensitivity. Moreover, two types of mRNA detection are feasible, thus, demonstrating the potential of this method for cancer companion diagnostics. Notably, the proposed method also demonstrates efficacy when applied for the detection of mRNA extracted from human cells and tumor-bearing mouse tissue and urine samples. Hence, this newly developed ligation-free isothermal nucleic acid amplification system is expected to be widely used in a variety of gene detection platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114256 | DOI Listing |
Analyst
June 2022
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
A recent surge of interest in microRNA has been driven by its discovery as a circulating biomarker of disease, with many diagnostic test platforms currently under development. Alternatives to widely used microRNA quantification methods such as quantitative reverse transcriptase PCR (qRT-PCR) are needed for use in portable and point-of-care devices which are incompatible with complex sample processing workflows and thermal cycling. Rolling circle amplification (RCA) is a one-pot assay technique which directly amplifies nucleic acids using sequence-specific microRNA priming to initiate a single-step isothermal reaction that is compatible with simple devices.
View Article and Find Full Text PDFBiosens Bioelectron
August 2022
Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. Electronic address:
In this study, we uncover a ligation-free DNA extension method in two adjacent fragmented probes, which are hybridized to target RNA, for developing a ligation-free nucleic acid amplification reaction. In this reaction, DNA elongation occurs from a forward probe to a phosphorothioated-hairpin probe in the presence of target RNA regardless of ligation. The second DNA elongation then occurs simultaneously at the nick site of the phosphorothioated probe and the self-priming region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!