DNA-dependent protein kinase (DNA-PK) is a key player in the NHEJ repair pathway. DNA-PK and its subunits, Ku70, Ku80, and catalytic subunit (DNA-PKcs), also participate in other cellular processes; however, there are still no systemic data on the effect of depletion of Ku70, Ku80 and DNA-PKcs on cell functions in the same cell line. Here, we analyzed transcriptome changes in HEK 293T cells after depletion of each DNA-PK subunit. Depletion of various DNA-PK subunits resulted in dramatic differences in the number of differentially expressed genes: only 7 genes changed more than 2-fold in DNA-PKcs-deficient cells, 29 genes in Ku80-deficient, 219 genes in Ku70-deficient. All DNA-PKcs-dependent genes were stress-related and depended on both Ku70 and Ku80. Two-thirds of Ku80-dependent genes were also differentially expressed in the Ku70-deficient line. Most Ku70-dependent genes were altered exclusively in Ku70-depleted cells, indicating that Ku70 is involved in the regulation of more processes than Ku80. GO enrichment analysis showed the effect of Ku70 knockdown on cell adhesion and matrix organization, protein degradation, cell proliferation, and differentiation. Depletion of Ku70, but not Ku80, provided greater cell motility and disassembly of cell-cell contacts. These data clearly indicate that Ku70 is more functionally important for the cell life than DNA-PKcs and even Ku80.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2022.04.004 | DOI Listing |
Clin Transl Med
December 2024
School of Life Sciences, Henan University, Kaifeng, China.
As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib.
View Article and Find Full Text PDFJ Inflamm Res
November 2024
Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People's Republic of China.
Purpose: Both Ku80 and Ku70 are promising drug targets for hepatocellular carcinoma (HCC) and crucial for immune regulation. However, their correlation with HCC immune signatures has not yet been investigated. Therefore, we aimed to investigate the relationship between Ku80, Ku70, and immune signatures in HCC and validate their significance in cytotoxic lymphocyte (CTL) immunotherapy.
View Article and Find Full Text PDFExp Hematol Oncol
November 2024
Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
Background: The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2024
Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India. Electronic address:
The utilization of high linear energy transfer (LET) carbon ion (C-ion) in radiotherapy has witnessed a notable rise in managing highly metastatic, recurrent, and chemo/radio-resistant human cancers. Non-small cell lung cancer (NSCLC) presents a formidable challenge due to its chemo-resistance and aggressive nature, resulting in poor prognosis and survival rates. In a previous study, we demonstrated that the combination of C-ion with the poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib significantly mitigated metastasis in A549 cells.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia.
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!