Differential selenium uptake by periphyton in boreal lake ecosystems.

Environ Pollut

Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada; Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.

Published: July 2022

The largest and most variable step of selenium (Se) assimilation into aquatic ecosystems is the rapid uptake of aqueous Se by primary producers. These organisms can transfer more harmful forms of Se to higher trophic levels via dietary pathways, although much uncertainty remains around this step of Se assimilation due to site-specific differences in water chemistry, hydrological and biogeochemical characteristics, and community composition. Thus, predictions of Se accumulation are difficult, and boreal lake systems are relatively understudied. To address these knowledge gaps, five static-renewal field experiments were performed to examine the bioaccumulation of low, environmentally relevant concentrations of Se, as selenite, by naturally grown periphyton from multiple boreal lakes. Periphyton rapidly accumulated Se at low aqueous Se concentrations, with tissue Se concentrations ranging from 8.0 to 24.9 μg/g dry mass (dm) in the 1-2 μg Se/L treatments. Enrichment functions ranged from 2870 to 12 536 L/kg dm in the 4 μg Se/L treatment, to 11 867-22 653 L/kg dm in the 0.5 μg Se/L treatment among lakes. Periphyton Se uptake differed among the five study lakes, with periphyton from mesotrophic lakes generally accumulating more Se than periphyton from oligotrophic lakes. Higher proportions of charophytes and greater dissolved inorganic carbon in more oligotrophic lakes corresponded to less periphyton Se uptake. Conversely, increased proportions of bacillariophytes and total dissolved phosphorus in more mesotrophic lakes corresponded to greater periphyton Se uptake. Periphyton community composition and water chemistry variables were correlated, limiting interpretation of differences in periphyton Se accumulation among lakes. The results of this research provide insight on the biodynamics of Se assimilation at the base of boreal lake food webs at environmentally relevant concentrations, which can potentially inform ecological risk assessments in boreal lake ecosystems in North America.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119304DOI Listing

Publication Analysis

Top Keywords

boreal lake
16
lakes periphyton
12
periphyton uptake
12
periphyton
10
uptake periphyton
8
lake ecosystems
8
water chemistry
8
community composition
8
environmentally relevant
8
relevant concentrations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!