Aging is inevitable. Along with reduced ability to maintain the homeostasis of various biological processes, aging gradually deteriorates overall health. Extensive research on the aging brain has identified cellular senescence as a critical risk factor of neurodegeneration and cognitive decline. Associations of cellular senescence with neurodegenerative diseases like Alzheimer's disease, Down syndrome, Parkinson's disease, and multiple sclerosis are evident in an extensive body of literature generated over decades of research on aging. Cellular senescence triggers neurodegeneration via a complex interplay of mechanisms including neuroinflammation, mitochondrial dysfunction, oxidative stress burden, deranged protein homeostasis, and compromised nuclear and blood-brain-barrier integrity. Thus, cellular senescence can serve as a primary therapeutic target for various neurodegenerative diseases. This review summarizes the concept of cellular senescence, its role in the aging brain, and how it mediates neurodegeneration in several neurodegenerative disorders. Further, we have also highlighted senolytic therapeutics discovered and employed to ameliorate cellular senescence-associated degenerative diseases. This review can aid in providing directions for repurposing senolytic compounds and finding more therapeutic strategies targeting cellular senescence for the management and treatment of neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2022.111675 | DOI Listing |
Sci Rep
December 2024
Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA.
Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China.
Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.
Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.
BMC Genomics
December 2024
Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!