Cathepsin C (Cat C) is involved in inflammation regulation by activating neutrophil serine proteases (NSPs). Therefore, Cat C is an attractive target for treatment of inflammatory diseases mediated by NSPs overactivation. In previous study, compounds 54 and 77 were reported to be the first non-peptidyl non-covalent Cat C inhibitors, with good enzyme inhibitory activity and NSPs activation inhibition, but their pharmacokinetic (PK) properties were unsatisfactory. In this study, starting from 77, after several rounds of structure-based design and modification, compound SF38, a novel Cat C inhibitor bearing a unique thiophene structure was identified, which exhibited strong inhibitory activity against Cat C (IC = 59.9 nM). Further mechanism study and in vivo evaluation showed that SF38 inhibited the Cat C activity in bone marrow and blood, decreased the activation of NSPs, and exhibited anti-inflammatory activity in an animal model of acute lung injury, with acceptable PK properties (F = 42.07%). These results enriched the structure-activity relationship (SAR) of Cat C inhibitor with thiophene structure characteristic, and proved the broad prospect of non-peptidyl non-covalent Cat C inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114368DOI Listing

Publication Analysis

Top Keywords

non-peptidyl non-covalent
12
cat inhibitor
12
bearing unique
8
structure-activity relationship
8
anti-inflammatory activity
8
cat
8
non-covalent cat
8
inhibitory activity
8
thiophene structure
8
activity
5

Similar Publications

Cathepsin C (Cat C) is involved in inflammation regulation by activating neutrophil serine proteases (NSPs). Therefore, Cat C is an attractive target for treatment of inflammatory diseases mediated by NSPs overactivation. In previous study, compounds 54 and 77 were reported to be the first non-peptidyl non-covalent Cat C inhibitors, with good enzyme inhibitory activity and NSPs activation inhibition, but their pharmacokinetic (PK) properties were unsatisfactory.

View Article and Find Full Text PDF

Discovery and Anti-inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor.

J Med Chem

August 2021

School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China.

Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery.

View Article and Find Full Text PDF

The non-peptidyl fungal metabolite L-783,281 activates TRK neurotrophin receptors.

J Neurochem

September 2001

Department of Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, UK.

Neurotrophin binding to the extracellular surface of the Trk family of tyrosine kinase receptors leads to the activation of multiple signalling cascades, culminating in neuroregenerative effects, including neuronal survival and neurite outgrowth. Since neurotrophins themselves are not ideal drug candidates due to their poor pharmacokinetic behaviour and bioavailability, small molecule neurotrophin mimetics may be beneficial in treating a number of neurodegenerative disorders. The present study demonstrates that L-783,281, a non-peptidyl fungal metabolite, is capable of stimulating TrkA, B and C phosphorylation to various extents in CHO cells stably expressing human Trk receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!