Light availability regulated by particulate organic matter affects coral assemblages on a turbid fringing reef.

Mar Environ Res

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: May 2022

AI Article Synopsis

  • Recent research shows that coral growth in turbid waters is mainly affected by changes in light availability due to suspended solids (SS), yet there's limited direct evidence supporting this idea.
  • A study on the Luhuitou fringing reef in China found rapid light attenuation and identified that different coral species responded variably to light levels, impacting coral community structure.
  • The study emphasizes that light reduction caused by particulate organic matter (POM) in SS is a crucial factor influencing coral assemblages, suggesting that minimizing terrestrial runoff, particularly POM, could help protect sensitive coral species from low-light stress.

Article Abstract

Recently, increasing evidence suggests that reef-building corals exposed to elevated suspended solids (SS) are largely structured by changes in underwater light availability (ULA). However, there are few direct and quantitative observations in situ support for this hypothesis; in particular, the contribution of SS to the diffuse attenuation coefficient of the photosynthetically active radiation (K) variations is not yet fully understood. Here, we investigated the variations in ULA, the structure of coral assemblages, and the concentration and composition of SS on the Luhuitou fringing reef, Sanya, China. Light attenuation was rapid (K: 0.60 ± 0.39 m) resulting in a shallow euphotic depth (Z) (<11 m). Benthic PAR showed significant positive correlations with branching and corymbose corals (e.g. Acropora spp.), while massive and encrusting species (e.g. Porites spp.) dominated the coral communities and showed no significant correlations with PAR. These results indicate that the depth range available for coral growth is shallow and the tolerance to low-light stress differs among coral species. Notably, K showed no significant correlations with the grain size fractions of SS, whereas significant positive correlations were found with its organic fraction content, demonstrating that the light attenuation of SS is mainly regulated by particulate organic matter (POM). Intriguingly, our isotopic evidence revealed that POM concentration contributed the most to changes in K, with its source being slightly less important. Combined, our results highlight ULA regulated by POM is an important factor in contributing to changes in coral assemblages on inshore turbid reefs, and reducing the input of terrestrial materials, especially POM, is an effective measure to alleviate the low-light stress on sensitive coral species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2022.105613DOI Listing

Publication Analysis

Top Keywords

light availability
8
coral assemblages
8
fringing reef
8
availability regulated
4
regulated particulate
4
particulate organic
4
organic matter
4
matter coral
4
assemblages turbid
4
turbid fringing
4

Similar Publications

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

The design of photobioreactors for microalgae cultivation aims to achieve an architecture that allows the most efficient photosynthetic growth. The availability of light at wavelengths that are important for photosynthesis is therefore particularly crucial for reactor design. While testing different reactor types in practice is expensive, simulations could effectively limit the range of material and reactor design options.

View Article and Find Full Text PDF

The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting.

View Article and Find Full Text PDF

Blood meal analysis: unveiling the feeding preferences of Aedes aegypti and Aedes albopictus in a dengue-endemic area.

Trop Biomed

December 2024

Department of Parasitology, Faculty of Medicine, Center of Insect Vector Study, Chiang Mai University, Chiang Mai, Thailand.

Studies have suggested animals as possible reservoir hosts for flaviviruses transmitted by Aedes mosquitoes; however, there is limited evidence for the dengue virus in Malaysia. One of the possible ways to determine the zoonotic potential for any pathogen transmission is through blood meal analysis which can provide valuable insights into the feeding preferences of the mosquitoes. Unfortunately, limited information is available on the feeding preferences of Aedes mosquitoes in Malaysia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!