In-air and underwater audiograms and directional hearing abilities were measured in humans. The lowest underwater thresholds were 2.8 µW/m or 3.6 mPa at a frequency of 500 Hz. The underwater hearing thresholds were 4-26 dB and 40-62 dB higher than in-air hearing thresholds when measured in intensity and pressure units, respectively. This difference is considerably smaller than what has been reported earlier. At frequencies below 1 kHz, when measured in units of particle velocity, the underwater threshold was much lower than published bone conduction thresholds, suggesting that underwater hearing is not always mediated by bone conduction pathways to the inner ear, as previously thought. We suggest it is the resonance of air in the air-filled middle ear that produces the low underwater thresholds, at least at frequencies below 1 kHz. The ability to determine the direction of a 700 Hz underwater sound source while being blindfolded was extremely poor, with submerged test subjects showing only coarse directional hearing abilities at azimuths of less than 50˚. The physical cues to sound direction are different in air and water, and the poor directional hearing abilities indicate that, in spite of low hearing thresholds, humans have no special adaptations to process directional acoustic cues under water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2022.108484 | DOI Listing |
PeerJ
January 2025
Institute of Science and Environment, University of Saint Joseph, Macao, Macao S.A.R., China.
While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.
Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.
View Article and Find Full Text PDFEar Nose Throat J
January 2025
Department of Otolaryngology, Northern Jiangsu People's Hospital, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.
This study aimed to compare the efficacy of continuous perfusion of underwater bone grinding combined with a -shaped incision versus a microscopic posterior ear incision in the treatment of attic cholesteatoma. Clinical trials were prospective studies from the Northern Jiangsu People's Hospital. Adult patients with middle ear cholesteatoma requiring ear surgery agreed to participate between September 2019 and September 2023 (age > 18).
View Article and Find Full Text PDFSci Rep
December 2024
Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany.
Many animals alternate between different media, such as air and water, thanks to specific adaptations. Among birds, penguins (Sphenisciformes) have the most extreme morphological, physiological, and behavioural adaptations to their amphibious lifestyle. Their auditory perception of sound, potentially matching different impedances in air and under water, is largely unknown particularly in terms of whether their underwater adaptations may have affected their in-air hearing capacity.
View Article and Find Full Text PDFJ Fish Biol
December 2024
Laboratoire Interdisciplinaire de Simulation Socio-Écologique (LISSÉ), Université du Québec en Outaouais, Gatineau, Québec, Canada.
There are gaps in our understanding of sturgeon's response to anthropogenic sounds and the spatial scales at which they occur. We measured spatial displacement of Atlantic sturgeon in the St. Lawrence River at various distances of approaching merchant ships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!