Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent challenges in the pharmaceutical and biomedical fields require the development of new analytical methods. Therefore, the development of new sensors is a very important task. In this paper, we are outlining the development of molecularly imprinted polymer (MIP) based sensors, which belongs to important branch of affinity sensors. In this review, recent advances in the design of MIP-based sensors are overviewed. MIPs-based sensing structures can replace expensive natural affinity compounds such as receptors or antibodies. Among many different polymers, conducting polymers show the most versatile properties, which are suitable for sensor application. Therefore, significant attention is paid towards MIPs based on conducting polymers, namely polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine. Moreover, many other materials, which could be imprinted analyte molecules, are overviewed. Among many conducting polymers, polypyrrole is highlighted as one of the most suitable for molecular imprinting. Some attention is dedicated to overview polymerization methods applied for the design of sensing structures used in various affinity sensors. The transduction of analytical signal is an important issue, therefore, physicochemical methods suitable for analytical signal transduction are also outlined. Advances, trends and perspectives in MIP application are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2022.114739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!