Effects of pyrene on the structure and metabolic function of soil microbial communities.

Environ Pollut

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Published: July 2022

The widely detected pyrene (PYR) is prone to accumulate and pose risks to the soil ecosystem. In this study, an aerobic closed microcosm was constructed to assess the effects of PYR at the environmental concentration (12.09 mg kg) on the structure, interactions, and metabolism of carbon sources of soil microbial communities. The results found that half-life of PYR was 37 d and its aerobic biodegradation was mainly implemented by both Gram-negative and Gram-positive bacteria as revealed by the quantitative results. High-throughput sequencing based on 16 S rRNA and ITS genes showed that PYR exposure interfered more significantly with the diversity and abundance of the bacterial community than that of the fungal community. For bacteria, rare species were sensitive to PYR, while Gemmatimonadota, Gaiellales, and Planococcaceae involved in organic pollutants detoxification and degradation were tolerant of PYR stress. Co-occurrence network analysis demonstrated that PYR enhanced the intraspecific cooperation within the bacterial community and altered the patterns of trophic interaction in the fungal community. Furthermore, the keystone taxa and their topological roles were altered, potentially inducing functionality changes. Function annotation suggested PYR inhibited the nitrogen fixation and ammonia oxidation processes but stimulated methylotrophy and methanol oxidation, especially on day 7. For the metabolism, microbial communities accelerated the metabolism of nitrogenous carbon sources (e.g. amine) to meet the physiological needs under PYR stress. This study clarifies the impacts of PYR on the structure, metabolism, and potential N and C cycling functions of soil microbial communities, deepening the knowledge of the environmental risks of PYR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119301DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
soil microbial
12
pyr
11
carbon sources
8
bacterial community
8
fungal community
8
pyr stress
8
effects pyrene
4
pyrene structure
4
structure metabolic
4

Similar Publications

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Microbial competition for iron determines its availability to the ferrous wheel.

ISME J

January 2025

Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.

Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!