Maintaining soil quality for agricultural production is a critical challenge, especially in the tropics. Due to the focus on environmental performance and the provision of soil ecosystem services, organic farming and agroforestry systems are proposed as alternative options to conventional monoculture farming. Soil processes underlying ecosystem services are strongly mediated by microbes; thus, increased understanding of the soil microbiome is crucial for the development of sustainable agricultural practices. Therefore, we measured and related soil quality indicators to bacterial and fungal community structures in five cocoa production systems, managed either organically or conventionally for 12 years, with varying crop diversity, from monoculture to agroforestry. In addition, a successional agroforestry system was included, which uses exclusively on-site pruning residues as soil inputs. Organic management increased soil organic carbon, nitrogen and labile carbon contents compared to conventional. Soil basal respiration and nitrogen mineralisation rates were highest in the successional agroforestry system. Across the field sites, fungal richness exceeded bacterial richness and fungal community composition was distinct between organic and conventional management, as well as between agroforestry and monoculture. Bacterial community composition differed mainly between organic and conventional management. Indicator species associated with organic management were taxonomically more diverse compared to taxa associated with conventionally managed systems. In conclusion, our results highlight the importance of organic management for maintaining soil quality in agroforestry systems for cocoa production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155223 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece.
The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFPlants (Basel)
January 2025
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
Phosphorus (P) availability in soils is often constrained by its accumulation in non-labile phosphorus (NLP) forms, limiting its accessibility to plants. This study examines how soil physical properties, chemical characteristics, and climatic conditions influence phosphorus fractionation and the transformation of NLP into plant-available labile phosphorus (LP). Utilizing global structural equation modeling (SEM), we found that silt content enhances organic phosphorus fractions, including NaHCO-Po and NaOH-Po.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!